
An Introduction to Software
Engineering

University of Baghdad 2016
Dr. Afaf Al-Kaddo

1

Chapter One: Introduction to
Software Engineering

1.1 The Computer Software Definition

1.2 Software Engineering Definition

1.3 The characteristic of software engineer

1.4 Software Characteristics

1.5 Software Applications

1.6 Software: A crisis on the horizon

1.7 The Characteristics of Well-Engineered Software

1.8 The Goals of Software Engineering

2

What is software?

The software might take the following forms:

Instructions: Computer programs, that when
executed provide desired function and
performance.

Data structured: That enable the programs to
manipulate information.

Documents: That describes the operation and use
of programs.

3

Types of Software

Generic Custom

4

Generic Software Products

Developed to be sold to a range of different

customers.

Examples:

—MS Office

—Photoshop

—Candy Crush Saga

5

Custom Software Products

Developed for a single customer according to
their specification.

The user (or person paying for the software)
controls the specification.

Example:

—Air traffic control systems

—Factory automation systems

—Building control systems

6

Computer Software Definition

It is the product that software engineers design

and build. It encompasses programs that execute

within a computer of any size and architecture,

documents that encompass hard-copy and virtual

forms, and data that combine numbers and text,

video, and audio information.

7

Software Engineering Definition

• The practical application of scientific knowledge to
the design and construction of computer programs
and the associated documentation required to
develop, operate, and maintain them.

• The systematic approach to the development,
operation, maintenance, and retirement of software.

• The establishment and use of engineering principles
(methods) in order to obtain economically software
that is reliable and works on real machines.

• Multi-person construction of multi-version software.

8

The characteristics of software
engineer

1- Good programmer and fluent in one or more
programming language.

2- Well versed data structure and approaches.

3- Familiar with several designs approaches.

4-Be able to translate not clear requirements and
desires into precise specification (مواصفات) .

5- Be able to converse with the user of the system in
terms of application not in “computer”.

6- Able to a build a model.

7- Communication skills and interpersonal skills.
9

Software Characteristics

1. Software is developed or engineered; it is not

manufactured in the classical sense. Some

similarities exist between software development

and hardware manufacture. In both activities,

high quality is achieved through good design.

Software costs are concentrated in engineering.

2. Software doesn't "wear out“ يتآكل

10

Failure curve for hardware

11

Idealized and actual failure curves for software

12

Software Characteristics

3. Software continues to be custom built.

A software component should be designed and

implemented so that it can be reused in many

different programs(algorithms, data structure

and encapsulation).

13

Software Applications

1. System software: It is a collection of programs written to
service other programs (compilers, editors) .

2. Real-time software: Software that monitors/analyzes/controls
real world events as they occur is called real time.

3. Business software: Business information processing is the
largest single software application area.

4. Engineering and scientific software: Computer-aided design
(CAD).

14

Software Applications

5. Embedded software: keypad control for a microwave.

6. Personal computer software: Such as (Word processing,
spreadsheets, computer graphics, multimedia, entertainment,
database management).

7. Web-based software: The Web pages retrieved by a browser
are software that incorporates executable instructions (e.g.,
HTML, Perl, or Java).

8. Artificial intelligence software: It makes use of non-numerical
algorithms to solve complex problems. Expert systems, pattern
recognition.

15

Software: A crisis on the horizon

The term alludes to a set of problems that are encountered in
the development of computer software.

Some “crisis” issues:

• Relative cost of hardware/software

• Low productivity

• “Wrong” products

• Poor quality

• Constant maintenance

• Technology transfer is slow

16

The Characteristics of Well-
Engineered Software

1- Maintainability: software should be written in such a way
that it may evolve to meet the changing needs of customer.

2- Dependability: software dependability has a range of
characteristics, including reliability, security and safety.

3- Efficiency: software should not make wasteful use of
system resources, such as memory and processor cycles.

4- Usability: software must be usable, without under effort by
the type of user for whom it is designed.

17

The Role of Software Engg. (1)

Customer
Programmer

A bridge from customer needs to programming implementation

First law of software engineering
Software engineer is willing to learn the problem domain

(problem cannot be solved without understanding it first)
18

The Role of Software Engg. (2)

19

Customer:

Requires a computer system to achieve some business goals

by user interaction or interaction with the environment

in a specified manner

System-to-be

Software-to-be

System-to-be

Software-to-be
User

Software Engineer’s task:

To understand how the system-to-be needs to interact with

the user or the environment so that customer’s requirement is met

and design the software-to-be

Programmer’s task:

To implement the software-to-be

designed by the software engineer

Environment

May be the

same person

Example: ATM Machine

Bank’s

remote

datacenter

Bank

customer

ATM machine

1
2

34
5

67
8

90

1
2

34
5

67
8

90

1
2

34
5

67
8

90
Communication link

Understanding the money-machine problem:

20

How ATM Machine Might Work

Window clerk

Bookkeeper

Safe keeper

Datacenter

liaison

Dispenser

Safe

Cash

Transaction

record

Phone

Speakerphone

Bank’s

remote

datacenter

Domain Model

How may I
help you?

Customer

Domain model
created with help of

domain expert

21

In domain analysis, we consider the system as
a “transparent box

The Goals of Software Engineering

 Readability

 Correctness

 Reliability (Code must be reliable).

 Reusability

 Extensibility

 Flexibility

 Efficiency

 Need to understand requirements.

 Want software with maximum functionality.

 Cost to develop and maintain important.

 Want results as fast as possible.

 Must minimize development risks.

22

Chapter Two: Software Development
Model

Topics Covered

2.1 Software Lifecycle

2.2 Linear Sequential Waterfall Model

2.3 Prototyping Model

2.4 Incremental Model

2.5 Spiral Model

23

Software Lifecycle

A software engineering lifecycle model describes how
one might put structure on the software engineering
activities. Each software product proceeds to a
number of distinct stages, these are:

1- Requirements engineering

2- Software design

3- Software construction

4- Validation and verification

5- Software testing

6- Software deployment

7- Software maintenance
24

25

Requirements Engineering
Components

 Requirements gathering
 (“requirements elicitation”) helps the customer to

define what is required: what is to be accomplished,
how the system will fit into the needs of the business,
and how the system will be used on a day-to-day basis

 Requirements analysis
 refining and modifying the gathered requirements

 Requirements specification

 documenting the system requirements in a semiformal
or formal manner to ensure clarity, consistency, and
completeness

Requirements and Specification

Problem domain

Specifi
cationCustomer

Software Engineer

Describes

Specifies

Requirements Program

Software (Solution) domain

Analyzes Develops

1. Requirements Engineering: is the interface between customers and
developers on a software project.

2. Software Design: the designers convert the logical software requirements from
stage 1 into a software design by describe the software in such a way that
programmers can write line of code that implement what the requirements
specify.

3. Software Construction: is concerned with implementing the software design
by means of programs in one or more programming languages. This stage
content several steps, these are :

A- Software reuse: (encapsulating effort in units of source code, which can be
reused in other projects).

1. Component based software engineering: Building software systems from
prefab software components .

2. Software product lines: The goal of a software product line is to maintain a set
of reusable core artifacts that are common to all systems in the product line.

27

b. Security and reliability: software must be dependable by making it
reliable (work very well under any environments), secure and safety.

c. Software documentation: (User documentation, Technical
documentation and Documentation generation).

d. Coding Standards: to ensure portability and make code maintainable
by others than the original developer.

4. Validation and Verification

a. Software Inspections: are reviews of the code with the purpose of
detecting defects.

b. Software Testing: testing each unit founded in this software, follow
by testing software integration.

5. Software Deployment: After development, software should be put to
use (available to users, who can then download, install, and activate it).

28

Activities make up the SW deployment process are:

 Release

 Packaging

 Transfer

 Installation

 Configuration

 Activation

 De-activation

 Update

 Adapt

 De-installation

 De-release

6. Software Maintenance: after first release, software maintenance is

needed to improve it (repair defects), and to extend it (add new

functionality).

29

The software process

A structured set of activities required to develop a

software system

 Specification

 Design

Construction

 Validation

 Evolution

A software process model is an abstract

representation of a process. It presents a description

of a process from some particular perspective
30

SW Process Models
Linear Sequential Waterfall Model

The whole process of software development is

divided into separate process phases, these are:

1) Requirement Specifications (analysis and definition).

2) Software Design.

3) Implementation.

4) Testing.

5) Maintenance.

31

32

Waterfall Method

Deployment &

Maintenance

Requirements

Design

Implementation

Testing
Waterfall

method

33

Unidirectional, no way back
finish this step before moving to the next

Disadvantages of the Waterfall Model

1. Not all requirements are received at once.

2. The problems with one phase are never solved

completely during that phase.

3. The project is not partitioned in phases in flexible way.

4. As the requirements of the customer goes on getting

added to the list, not all the requirements are fulfilled,

this results in development of almost unusable system.

5. difficulty of accommodating change after the process is

underway

Therefore, this model is only appropriate when the
requirements are well-understood

34

The Prototype Model

The prototype model is using for many reasons,
such as:

1. A customer defines a set of general objectives for
software but does not identify detailed input,
processing, or output requirements.

2. The developer may be unsure of the efficiency of
an algorithm, the adaptability of an operating
system, or the form that human/machine
interaction should take. In these, and many other
situations, a prototyping paradigm may offer the
best approach.

35

The stages of the prototyping model:

1) Requirements gathering (listen to customer): developer and

customer meet and define the overall objectives for the

software, requirements, and outline areas. A "quick design"

then occurs. The quick design focuses on a representation of

those aspects of the software that will be visible to the

customer/user (e.g., input approaches and output formats).

36

37

2) Construction of a prototype: writing the

software code depending on the quick design

information.

3) Evaluation: the prototype is evaluated by the

customer/user and used to refine requirements

for the software to be developed. Iteration

occurs as the prototype is turned to satisfy the

needs of the customer, while at the same time

enabling the developer to better understand

what needs to be done.

The Incremental Model

The incremental model combines elements of the (waterfall
model with the iterative philosophy of prototyping). Each
linear sequence produces “increment” of the software. For
example, word-processing software developed using the
incremental paradigm might:

1) Deliver basic file management, editing, and document
production functions in the first increment.

2) More sophisticated editing and document production
capabilities in the second increment.

3) Spelling and grammar checking in the third increment.

4) Advanced page layout capability in the fourth increment.

38

39

The first increment is often a core product. That

is, basic requirements are addressed, but many

supplementary features remain undelivered. The

core product is used by the customer. As a result

of use and/or evaluation, a plan is developed for

the next increment. But unlike prototyping, the

incremental model focuses on the delivery of an

operational product with each increment.

40

 Rather than deliver the system as a single
delivery, the development and delivery is
broken down into increments with each
increment delivering part of the required
functionality

 User requirements are prioritised and the
highest priority requirements are included in
early increments

 Once the development of an increment is
started, the requirements are frozen though
requirements for later increments can continue
to evolve

41

42

Incremental development advantages

 Customer value can be delivered with each increment
so system functionality is available earlier

 Early increments act as a prototype to help elicit
requirements for later increments

 Lower risk of overall project failure

 The highest priority system services tend to receive the
most testing

 Staffing is unavailable for a complete implementation.

 Increments can be planned to manage technical risks.
plan early increments in a way that avoids the use of
hardware, thereby enabling partial functionality to be
delivered to end-users without inordinate delay.

43

Problems

 Lack of process visibility

Systems are often poorly structured

Special skills (e.g. in languages for rapid

prototyping) may be required

Applicability

For small or medium-size interactive systems

For parts of large systems (e.g. the user

interface)

 For short-lifetime systems

44

The Spiral Model

Spiral model, is an evolutionary (تطوري)
software process model that couples the
iterative nature of prototyping with the
controlled and systematic aspects of the
linear sequential model. Using the spiral
model, software is developed in a series of
incremental releases. During early iterations,
the incremental release might be a paper
model or prototype. During later iterations,
increasingly more complete versions of the
engineered system are produced.

45

46

47

 Process is represented as a spiral rather than as a sequence of activities with

backtracking

 Each loop in the spiral represents a phase in the process.

 No fixed phases such as specification or design loops in the spiral are

chosen depending on what is required

 Risks are explicitly assessed and resolved throughout the process

48

A spiral model is divided into six task regions:

1.Customer communication-tasks required to establish

effective communication between developer and customer.

2.Planning-tasks required defining resources, timelines, and

other project-related information.

3.Risk analysis-tasks required to assess both technical and

management risks.

4.Engineering-tasks required building one or more

representations of the application.

49

50

5.Construction and release-tasks required to construct, test,

install, and provide user support (e.g., documentation and

training).

6.Customer evaluation-tasks required to obtain customer

feedback based on evaluation of the software representations

created during the engineering stage and implemented during

the installation stage moves around the spiral in a clockwise

direction, beginning at the center.

The first circuit result in the development of a product

specification; subsequent passes around the spiral might

be used to develop a prototype and then more

sophisticated versions of the software. Each pass through

the planning region results in adjustments to the project

plan. Cost and schedule are adjusted based on feedback

derived from customer evaluation. In addition, the project

manager adjusts the planned number of iterations required

to complete the software.

51

The spiral model has drawbacks for
many reasons:

1. It may be difficult to convince customers (particularly
in contract situations) that the evolutionary approach is
controllable.

2. It demands considerable risk assessment expertise and
relies on this expertise for success. If a major risk is not
uncovered and managed, problems will undoubtedly
occur.

3. The model has not been used as widely as the linear
sequential or prototyping paradigms. It will take a
number of years before efficacy of this important
paradigm can be determined with absolute certainty.

52

Case Study: Home Access Control

Objective: Design an electronic system for:

- Home access control

• Locks and lighting operation

- Intrusion detection and warning

System

Lock Photosensor Switch

Light bulb

Alarm bell

1

2

3

4

5

X

Y

1

2

3

4

5

X

Y

53

Case Study – More Details

System

Lock Photosensor Switch

Light bulb

Alarm bell

1

2

3

4

5

X

Y

1

2

3

4

5

X

Y

54

Concept Map for Home Access Control

tenant

key

can be prevented by enforcing
lock opened

wishes

causes

enters

valid key invalid key

can be

dictionary attack

may signal

upper bound on failed attempts

burglar launches

55

Chapter Three: Software

Requirements

Topics covered

3.1 Requirements Analysis and Definition

3.2 Requirements Specification

3.3 Software Requirements

3.4 Software Specification

3.5 Software Requirements Document

56

Requirements Engineering Process

57

Feasibility studies

A feasibility study decides whether or not the
proposed system is worthwhile.

A short (2-3 weeks) focused study that checks

—If the system contributes to organisational
objectives;

—If the system can be engineered using current
technology and within budget;

—If the system can be integrated with other systems
that are used.

58

59

Requirements

• Requirement

– features of system or system function used to
fulfill system purpose.

• Focus on customer’s needs and problem, not
on solutions:

– Requirements definition document

(written for customer).

– Requirements specification document

(written for programmer; technical staff).

Requirements engineering process

60

Elicitation and analysis

Involves technical staff working with
customers to find out about:

—the application domain,

—the services that the system should provide

—and the system’s operational constraints.

May involve end-users, managers, engineers
involved in maintenance, domain experts,
trade unions, etc. These are called
stakeholders.

61

Example: ATM stakeholders

 Bank customers

 Representatives of other banks

 Bank managers

 Counter staff

Database administrators

 Security managers

Marketing department

Hardware and software maintenance engineers

 Banking regulators

62

Problems of requirements elicitation

63

Requirements Analysis and Definition

Software requirements analysis is necessary to avoid

creating software product that fails to meet the

customer's needs.

Software requirements are description of features

and functionalities of the target system. Requirements

convey the expectations of users from the software

product. The requirements can be obvious or hidden,

known or unknown, expected or unexpected from

client’s point of view.

64

Writing Requirements Definitions

Requirements definitions usually consist of natural language,

supplemented by (e.g., UML: Unified Modeling Language)

diagrams and tables.

Three types of problems can arise:

– Lack of clarity: It is hard to write documents that are both

precise and easy-to-read.

– Requirements confusion: Functional and non-functional

requirements tend to be intertwined.

– Requirements amalgamation: Several different

requirements may be expressed together.

User requirements

• Statements in natural language plus diagrams
of the services that the system provides and its
operational constraints.

• Should describe functional and non-functional
requirements so that they are understandable
by system users who don't have detailed
technical knowledge.

• Written for customers

• Definition

66

System requirements

A structured document setting out detailed

descriptions of the system services.

• Written as a contract between client and

contractor

• Written for developers

• Specification

67

System Req.: Functional and Non-functional
Requirements

Functional requirements describe system services or functions

– Compute sales tax on a purchase

– Update the database on the server ...

Non-functional requirements are constraints on the system or
the development process

– Physical environment (equipment locations, multiple sites,
etc.).

– Interfaces (data medium etc.).

– User & human factors (who are the users, their skill level etc.).

Non-functional requirements may be more critical than
functional requirements.

If these are not met, the system is useless!

Types of Non-functional
Requirements

Performance
requirements

Space
requirements

Usability
requirements

Efficiency
requirements

Reliability
requirements

Portability
requirements

Interoperability
requirements

Ethical
requirements

Legislative
requirements

Implementation
requirements

Standards
requirements

Delivery
requirements

Safety
requirements

Privacy
requirements

Product
requirements

Organizational
requirements

External
requirements

Non-functional
requirements

1. Requirements Analysis
• SE bridges the gap between system level requirements engineering and software

design.

• Provides software designer with a representation of system information, function, and
behavior that can be translated to data, architectural, components level design.

• Expect to do a little bit of design during analysis and a little bit of analysis during
design.

2. Software Requirements Analysis
• Identify the "customer" and work Together to negotiate "product –level"

• Build an analysis model

-Focus on data

- define function

- represent behavior

• Prototype areas of uncertainty

• Develop a specification that will guide design

• Conduct formal technical reviews.

70

3. Software Requirements Analysis Phases

• Problem recognition

• Evaluation and synthesis (focus is on what not how)

• Modeling

• Specification

• Review

4. Analysis Principles

• The information domain of the problem must be represented
and understood.

• The functions that the software is to perform must be
defined.

• Software behavior must be represented.

• Models depicting information, function, and behavior most
are partitioned in a hierarchal manner detail.

• The analysis process should move from the essential
information toward implementation details.

71

Software Requirement Specification
(SRS)

SRS is a document created by system analyst after the
requirements are collected from various stakeholders.

SRS defines how the intended software will interact with
hardware, external interfaces, speed of operation, response
time of system, portability of software across various
platforms, maintainability, speed of recovery after crashing,
Security, Quality, Limitations etc.

SRS should come up with following features:

 User Requirements are expressed in natural language.

 Technical requirements are expressed in structured language,
which is used inside the organization.

 Design description should be written in Pseudo code.

 Format of Forms and GUI screen prints.

72

Requirement Elicitation Process

Requirements gathering

Organizing Requirements - The developers prioritize and

arrange the requirements in order of importance, urgency and

convenience.

Negotiation & discussion - If requirements are ambiguous or

there are some conflicts , then negotiated and discussed with

stakeholders (end-users, managers, engineers involved in
maintenance, domain experts, trade unions, etc.).

Documentation - All formal & informal, functional and non-

functional requirements are documented for next phase

processing.

73

This may take several iterations:

Business req. User req. System req.

(Each phase itself may also use several iterations)

74

Software specification
• A detailed software description which can serve as a basis for a design

or implementation.

• Written for developers

The Requirements Document
• Official statement of what is required of the system developers.
• Should include both a definition and a specification of requirements

• Should:

- specify external system behavior

- specify implementation constraints

- be easy to change (but changes must be managed)

- serve as a reference tool for maintenance

- record forethought about the life cycle of the system (i.e. predict
changes)

- characterize responses to unexpected events

• It is not a design document

- it should state what the system should do rather than how it should
do it

75

Requirements document structure

• Introduction

• Glossary

• User requirements definition

• System architecture

• System requirements specification

• System models

• System evolution

• Appendices

• Index

76

Users of Requirements documents
 System customers: Read them back to check that they

meet their needs; specify changes to the requirements

Managers: Use the requirements document to plan a
bid for the system and to plan the system development
process

 System Engineers: Use the requirements to
understand what system is to be developed

 Test Engineers: Use the requirements to develop
validation tests for the system

Maintenance Engineers: Use the requirements to help
understand the system and the relationships between
its parts

77

Requirement Elicitation Techniques

1. Interviews

2. Surveys

3. Questionnaires

4. Task analysis

5. Domain Analysis

6. Brainstorming

7. Prototyping

8. Observation

78

Software Requirements
Characteristics

 Clear
 Correct
 Consistent
 Coherent
 Comprehensible
 Modifiable
 Verifiable
 Prioritized
 Unambiguous
 Traceable
 Credible source

79

Representing Requirement
Specification

Use Case Model

Use Case Diagram

80

Use Cases and Scenarios

A use case is the specification of a sequence of actions, including
variants, that a system (or other entity) can perform, interacting
with actors of the system”.

– e.g., buy a DVD through the internet

A scenario is a particular trace of action occurrences, starting from a
known initial state.

– e.g., connect to myDVD.com, go to the “search” page

...

Use case model
Use-cases are a scenario based technique in the

UML (Unified Modeling Language)

—identify the actors in an interaction

—describe the interaction itself

A set of use cases should describe all possible

interactions with the system.

use case = a named collection

of scenarios

82

What Are the Benefits of a Use-Case
Model?

• Used to communicate with the end users and domain

experts

– Provides buy-in at an early stage of system development

– Insures a mutual understanding of the requirements

• Used to identify

– Who interacts with the system and what the system should do

– The interfaces the system should have

• Used to verify

– All requirements have been captured

– The development team understands the requirements

Major Concepts in Use-Case Modeling

• An actor represents anything that

interacts with the system.

• A use case is a sequence of actions

a system performs that yields an

observable result of value to a

particular actor.

Use Case

Actor

Use Cases and Actors
• A use case models a dialog between actors and the

system.

• A use case is initiated by an actor to invoke a

certain functionality in the system.

Actor Use Case

Communicates Association

What Is an Actor?
 Actors are not part of the system.

 Actors represent roles a user of the

system can play.

 They can represent a human, a

machine, or another system.

 They can actively interchange

information with the system.

 They can be a giver of information.

 They can be a passive recipient of

information.

 An actor represents a role that a

human, hardware device, or another

system can play.

Actors are EXTERNAL.

Actor

A User May Have Different Roles

Charlie

Charlie
asstudent

Charlie as
professor

Professor

Student

How to Find Use Cases

Answer the following questions to find

use cases.

– For each actor you have identified, what are

the tasks the system would be involved in?

– Does the actor need to be informed about

certain occurrences in the system?

– Will the actor need to inform the system

about sudden, external changes?

– What information must be modified or

created in the system?

Naming the Use Case
• The name indicates what is

achieved by its interactions with

the actor(s).

• The name may be several words

in length.

• No two use cases should have

the same name.

Register for
Courses

Login

Maintain Student
Information

Use case 1: Register for courses Description:

This use case is initiated by the student. It

provides the capability to create, review, modify,

and delete a course schedule for a specialized

semester. All required billing information is sent

to the Billing System.

Actors: Student, Billing System.

Notes:

A student can register for at most 4 courses each

semester.

90

Main success scenario:

1. The student identifies himself/herself.

2. The system verifies student identity.

3. The student selects a valid semester.

4. The student creates, reviews, or changes a schedule.

5. The systems prints a notification.

6. The system sends billing information to the Billing

System

91

92

Practice: Find the Actors

• In the Course Registration System Requirements

document, read the Problem Statement for the

Course Registration case study.

• As a group, identify the following

– Actors

– Description of the actor

Practice: Solution

Billing System

Registrar

Professor
Course Catalog

Student

A person who is

registered to take

courses at the

University

The unabridged

catalog of all courses

offered by the

University

The external system

responsible for student

billing

A person who is

teaching classes at the

University

The person who is

responsible for the

maintenance of the

course registration

system

Requirements Elicitation Using Use
Cases

Identifying Scenarios

Identifying Use Cases

Identifying Actors

Refining Use Cases

Identifying Relationships between Actors and
Use Cases

Identifying Nonfunctional Requirements

95

2- Identifying Use Cases

 Use Case

—Specifies all possible scenarios for a given functionality

—Initiated by an actor

 Motivations for use cases

—Generalizing related scenarios help developers define
the scope of the system

—The role of each user of the system is clarified

 Use Case Descriptions

—Entry and exit conditions

—Flow of events

—Quality requirements
96

3- Identifying Actors

 Actors

—person or machine using the system in a particular role.

 Actors usually correspond to existing roles within the client
organization

 Guide Questions

—Which user groups execute the system’s main functions?

—Which user groups perform secondary functions, such as
maintenance and administration?

—Which user groups are supported by the system to
perform their work?

—With what external hardware or software system will the
system interact?

97

Actors vs. Stakeholders

• Actors

—interact with the system

—They might be humans or other systems

• Stakeholders

—have some interest in the system

—They include the users and many others,

e.g., person who invests in a system to

improve the business processes but never uses

the system

98

Formulating Use Cases

Step 1: Name the use case

—Use case name: ReportEmergency

Step 2: Find the actors

—Generalize the concrete names (“Bob”) to participating
actors (“Field officer”)

—Participating Actors:

- Field Officer (Bob and Alice in the Scenario)

- Dispatcher(John in the Scenario)

Step 3: Concentrate on the flow of events

—Use informal natural language

—Number them to form a flow

Step 4: Describe entry and exit conditions

Step 5: Describe exceptions

Step 6: List non-functional requirements related to the use case

99

Use Case Example: ReportEmergency
 Use case name: ReportEmergency

 Participating Actors:

—Field Officer(Bob and Alice in the Scenario)

—Dispatcher(John in the Scenario)

 Exceptions:

—FRIEND notifies the FieldOfficerimmediately if the connection

between her terminal and the central is lost.

—FRIEND notifies the Dispatcher immediately if the connection between

any logged in FieldOfficerand the central is lost.

 Flow of Events: on next slide.

 Special Requirements (Non-functional):

—The system acknowledges the FieldOfficer’sreport within 30 seconds.

—The selected response arrives no later than 30 seconds after it is sent by

the Dispatcher.100

ReportEmergency:: Flow of Events

1.The FieldOfficeractivates the “Report Emergency”
function of her terminal.

2.FRIEND responds by presenting a form to the officer.

3.The FieldOfficerfills the form, by selecting the emergency
level, type, location, and a brief description of the situation.
The FieldOfficeralso describes possible responses to the
emergency situation. The FieldOfficersubmits the form after
finishing it.

4.FRIEND receives the form and notifies the Dispatcher.

5.The Dispatcher reviews the submitted information and
creates an Incident in the database by invoking the
OpenIncidentuse case.

6.The Dispatcher selects a response and acknowledges the
emergency report.

7.FRIEND displays the acknowledgment and the selected
response to the FieldOfficer.

101

102

Use Case Diagram

 Use case:

—A written description of one use of the system.

- Who will use the system?

- What will they be able to do with it?

- No standard for format and content.

 Use case diagram

—A graphical representation of a use case.

—A diagram type defined in UML.

—Gives the developers and users a high-level view of the

relationships among the different Use Cases and Actors of a

system.

 UML: Unified Modeling Language

103

Use case diagram

• Captures system functionality as seen by users

• Built in early stages of development

• Purpose

– Specify the context of a system

– Capture the requirements of a system

– Validate a system’s architecture

– Drive implementation and generate test cases

• Developed by analysts and domain experts

How Would You Read This Diagram?

Course Catalog

View Report Card

Register for Courses

Submit Grades

Select Courses to Teach

Student

Professor

Billing System

Maintain Student Information

Maintain Professor Information

Login

Close Registration

Registrar

Use Case Diagram - Example

Development Manager

User Management

System Configuration
Administrator

Normal User

User Authentication

Query

Project Management

Project Manager

Use Case Diagram

Four types of components:

—Actors: stick figure

—Use case: oval

—the system: a boundary box

—relationships: lines

107

Draw a Use Case Diagram

For a use case: all participants (actors) are associated
with it.

Use non-directed lines to connect Actors and Use
Cases.

108

Draw a Use Case Diagram
For a system: list all use cases and their actors

• Put all use cases inside the system boundary box, all actors
outside the box. (Optional)

• Put primary actors (initiators) on the left, secondary actors
(participants) on the right.

• Each use case should have a text description (as described
previously).

109

<<Include>> and <<Extend>>
<<include>>:

 If multiple use cases shares the same partial flow of
events, make the partial flow a separate use case and
include it in these multiple use cases.

OR the inclusion use case is an important part of the
base use case.

—The base case is incomplete without the inclusion
case.

<<extend>>:

The extension use case consists of additional behavior
that can incrementally augment the behavior of the base
use case.

—The extension use case is not meaningful on its own.
110

Example

111

ESE — Requirements Collection

Use Case Diagrams

113

User Profile - Example

• Full Control (Administrator)

• Read/Write/Modify All (Manager)

• Read/Write/Modify Own (Inspector)

• Read Only (General Public)

114

Use Case Example - 1

• Read Only Users

– The read-only users will only read the database and cannot

insert, delete or modify any records.

• Read/Write/Modify Own Users

– This level of users will be able to insert new inspection

details, facility information and generate letters. They will

be also able to modify the entries they made in the past.

115

Use Case Example - 2

• Read/Write/Modify All Users

– This level of users will be able to do all the record

maintenance tasks. They will be able to modify any records

created by any users.

• Full Control Users

– This is the system administrative level which will be able to

change any application settings, as well as maintaining user

profiles.

116

117

118

Requirements engineering process

119

Requirements validation

Concerned with demonstrating that the
requirements define the system that the customer
really wants.

Requirements error costs are high so validation is
very important

—Fixing a requirements error after delivery may
cost up to 100 times the cost of fixing an
implementation error.

SMART requirement!

Focus: correctness and completeness

120

Requirements validation techniques
Review: a manual process that involves multiple readers

checking document for anomalies and omissions.

Regular reviews should be held while the requirements
definition is being formulated.

The review team:

—review leader

—producer

—recorder

—reviewers

Reviews may be formal (with completed documents) or
informal.

Good communications between developers, customers and
users can resolve problems at an early stage.

121

Requirements validation techniques

Prototyping : Using an executable model of the system to

check requirements.

Goal: quickly generate something that can be tested by user

—no design, no documentation

—minimal implementation

—fake calculations

—assume input in simplistic format, etc.

—no test plan

—test with users: talk them through the form

—throw away after it is used: not delivered or reused!

122

Summary

Requirements engineering process

—Feasibility study

—Requirement elicitation and analysis

*Discovery, Organization, Prioritization and Documentation

*Interviews

*Scenarios

—Requirement specification

*Use case model

*Use case diagram

—Requirement validation

* Reviews

* Prototyping

123

Chapter Four: Formal Requirements
 Structure Analysis

Analysis Model Objectives

The Elements of Analysis Model

- Data Dictionary

- Entity Relationship Diagram(ERD) and Data Object
Description

- Data Flow Diagram(DFD) and Process Specification

- State Transition Diagram (STD) and Control
Specification

Data Modeling Elements

- Attributes

- Relationships(Cardinality and Modality)

- Creation of ERD

- Creation of DFD

124

Structure Analysis

Structured analysis is a software engineering
technique that uses graphical diagrams to
develop and portray system specifications that
are easily understood by users. These diagrams
describe the steps that need to occur and the data
required to meet the design function of particular
software. This type of analysis mainly focuses on
logical systems and functions, and aims to
convert business requirements into computer
programs and hardware specifications.

125

Analysis Model Objectives

 Describe what the customer requires.

 Establish a basis for the creation of a software design.

 Devise a set of requirements that can be validated once the

software is built.

126

The Elements of Analysis Model
1- Data dictionary - contains the descriptions of all data objects

consumed or produced by the software.

• It stores meaning and origin of data, its relationship with other data,
data format for usage etc. Data dictionary has rigorous definitions of all
names in order to facilitate user and software designers.

• It is often referenced as meta-data (data about data) repository. It is
created along with DFD (Data Flow Diagram) model of software
program and is expected to be updated whenever DFD is changed or
updated.

• The data is referenced via data dictionary while designing and
implementing software.

• Data dictionary removes any chances of ambiguity. It helps keeping
work of programmers and designers synchronized while using same
object reference everywhere in the program.

• It provides a way of documentation for the complete database system in
one place.

• Validation of DFD is carried out using data dictionary.

127

A- Contents

Data dictionary should contain information about

the following:

Data Flow

Data Structure

Data Elements

Data Stores

Data Processing

Data Flow is described by means of DFDs and

represented in algebraic form as described.

128

= Composed of
{} Repetition
() Optional
+ And
[/] Or

Example

Address = House No + (Street / Area) + City + State

Course ID = Course Number + Course Name + Course

Level + Course Grades

129

B- Data Elements

Data elements consist of Name and
descriptions of Data and Control Items,
Internal or External data stores etc. with the
following details:

Primary Name

Secondary Name (Alias)

Use-case (How and where to use)

Content Description (Notation etc.)

Supplementary Information (preset values,
constraints etc.)

130

C- Data Store

It stores the information from where the data enters into the
system and exists out of the system. The Data Store may
include :–

- Files
– Internal to software.

– External to software but on the same machine.

– External to software and system, located on different machine.

- Tables
– Naming convention

– Indexing property

D- Data Processing

There are two types of Data Processing:

Logical: As user sees it

Physical: As software sees it

131

2- Entity relationship diagram (ERD):- depicts
relationships between data objects.

 Primary components identified for the ERD:
– data objects

– attributes

– relationships

– type indicators

 Primary purpose: represent data objects and their
relationships

 Iconography:
– Data objects are represented by a labeled rectangle

– Relationships are indicated with a labeled line connecting
objects (Some variations: the connecting line contains a
diamond that is labeled with the relationship)

– Connections between data objects and relationships are
established using a variety of special symbols that indicate
cardinality and modality

132

A simple ERD and data object table (Note: In this ERD the

relationship builds is indicated by a diamond)

133

1. During requirements elicitation, customers are asked to list the "things"

that the application or business process addresses. These "things" evolve

into a list of input and output data objects as well as external entities that

produce or consume information.

2. Taking the objects one at a time, the analyst and customer define whether

or not a connection (unnamed at this stage) exists between the data object

and other objects.

3. Wherever a connection exists, the analyst and the customer create one or

more object/relationship pairs.

4. For each object/relationship pair, cardinality and modality are explored.

5. Steps 2 through 4 are continued iteratively until all object/relationships

have been defined. It is common to discover omissions as this process

continues. New objects and relationships will invariably be added as the

number of iterations grows.

6. The attributes of each entity are defined.

7. An entity relationship diagram is formalized and reviewed.

8. Steps 1 through 7 are repeated until data modeling is complete.

Creating Entity Relationship Diagrams (ERD)

134

3- Data flow diagram (DFD) - provides an indication
of how data are transformed as they move through the
system; also depicts functions that transform the data
flow (a function is represented in a DFD using a
process specification or PSPEC).

DFD is graphical representation of flow of data in an
information system. It is capable of depicting
incoming data flow, outgoing data flow and stored
data. The DFD does not mention anything about how
data flows through the system.

There is a difference between DFD and Flowchart.
The flowchart depicts flow of control in program
modules. DFDs depict flow of data in the system at
various levels. DFD does not contain any control or
branch elements.

135

Data Flow Diagrams are either Logical or Physical.

Logical DFD - Concentrates on the system

process and flow of data in the system. For

example in a Banking software system, how

data is moved between different entities.

Physical DFD - Shows how the data flow is

actually implemented in the system. It is more

specific and close to the implementation.

136

DFD Components
DFD can represent Source, destination, storage and flow of data using

the following set of components -

Entities - Entities are source and destination of information data.
Entities are represented by rectangles with their respective names.

Process - Activities and action taken on the data are represented by
Circle or Round-edged rectangles.

Data Storage - There are two variants of data storage - it can either be
represented as a rectangle with absence of both smaller sides or as
an open-sided rectangle with only one side missing.

Data Flow - Movement of data is shown by pointed arrows. Data
movement is shown from the base of arrow as its source towards
head of the arrow as destination.

137

Levels of DFD

Level 0 - Highest abstraction level DFD is

known as Level 0 DFD, which depicts the

entire information system as one diagram

concealing all the underlying details. Level 0

DFDs are also known as context level DFDs.

138

Level 1 - The Level 0 DFD is broken down into

more specific, Level 1 DFD. Level 1 DFD

depicts basic modules in the system and flow

of data among various modules. Level 1 DFD

also mentions basic processes and sources of

information.

139

Level 2 - At this level, DFD shows how data

flows inside the modules mentioned in Level 1.

Higher level DFDs can be transformed into

more specific lower level DFDs with deeper

level of understanding unless the desired level

of specification is achieved.

140

4- State transition diagram (STD) - indicates

how the system behaves as a consequence of

external events, states are used to represent

behavior modes. Arcs are labeled with the

events triggering the transitions from one state

to another (control information is contained in

control specification or CSPEC).

141

Data Modeling Elements (ERD)
Attributes - name a data object instance,

describe its characteristics, or make reference

to another data object

142

Tabular representation of data object

143

Relationships - indicate the manner in which

data objects are connected to one another .

144

Cardinality and Modality (ERD)

• Cardinality - in data modeling, cardinality specifies how the

number of occurrences of one object are related to the number

of occurrences of another object (1:1, 1:N, M:N)

• Modality - zero (0) for an optional object relationship and one

(1) for a mandatory relationship

145

Entity-Relationship Model: Entity-Relationship

model is a type of database model based on the

notion of real world entities and relationship

among them. We can map real world scenario

onto ER database model. ER Model creates a

set of entities with their attributes, a set of

constraints and relation among them.

146

ER Model is best used for the conceptual design of database. ER Model can be represented
as follows:

Entity - An entity in ER Model is a real world being, which has some properties called
attributes. Every attribute is defined by its corresponding set of values, called domain.

For example, Consider a school database. Here, a student is an entity. Student has various
attributes like name, id, age and class etc.

Relationship - The logical association among entities is called relationship. Relationships
are mapped with entities in various ways. Mapping cardinalities define the number of
associations between two entities.

Mapping cardinalities:
– one to one

– one to many

– many to one

– many to many

147

Software Design Definition

Activities of Software Design

 Effective Modular Design

 Introduction to Object Oriented Design

 Top Down and Bottom up Design

148

Software Design Definition

Software design is a process to transform user requirements
into some suitable form, which helps the programmer in
software coding and implementation.

For assessing user requirements, an SRS (Software
Requirement Specification) document is created whereas
for coding and implementation, there is a need of more
specific and detailed requirements in software terms. The
output of this process can directly be used into
implementation in programming languages.

Software design is the first step in SDLC (Software Design
Life Cycle), which moves the concentration from problem
domain to solution domain. It tries to specify how to fulfill
the requirements mentioned in SRS.

149

Activities of Software Design
Software design yields three levels of results:

Architectural Design - The architectural design is the highest abstract
version of the system. It identifies the software as a system with
many components interacting with each other. At this level, the
designers get the idea of proposed solution domain.

High-level Design- The high-level design breaks the ‘single entity-
multiple component’ concept of architectural design into less-
abstracted view of sub-systems and modules and depicts their
interaction with each other. High-level design focuses on how the
system along with all of its components can be implemented in
forms of modules. It recognizes modular structure of each sub-
system and their relation and interaction among each other.

Detailed Design- Detailed design deals with the implementation part of
what is seen as a system and its sub-systems in the previous two
designs. It is more detailed towards modules and their
implementations. It defines logical structure of each module and
their interfaces to communicate with other modules.

150

Effective Modular Design

Modularization is a technique to divide a software
system into multiple discrete and independent modules,
which are expected to be capable of carrying out task(s)
independently. These modules may work as basic
constructs for the entire software. Designers tend to
design modules such that they can be executed and/or
compiled separately and independently.

Modular design unintentionally follows the rules of
‘divide and conquer’ problem-solving strategy this is
because there are many other benefits attached with the
modular design of software.

151

Advantage of modularization:

 Smaller components are easier to maintain

 Program can be divided based on functional

aspects

 Desired level of abstraction can be brought in

the program

 Components with high cohesion can be re-used

again

 Concurrent execution can be made possible

 Desired from security aspect

152

Coupling and Cohesion
Cohesion

Cohesion is a measure that defines the degree of intra-dependability within elements of a
module. The greater the cohesion, the better is the program design.

Co-incidental cohesion - It is unplanned and random cohesion, which might be the result
of breaking the program into smaller modules for the sake of modularization. Because
it is unplanned, it may serve confusion to the programmers and is generally not-
accepted.

Logical cohesion - When logically categorized elements are put together into a module, it
is called logical cohesion.

Temporal Cohesion - When elements of module are organized such that they are
processed at a similar point in time, it is called temporal cohesion.

Procedural cohesion - When elements of module are grouped together, which are
executed sequentially in order to perform a task, it is called procedural cohesion.

Communicational cohesion - When elements of module are grouped together, which are
executed sequentially and work on same data (information), it is called
communicational cohesion.

Sequential cohesion - When elements of module are grouped because the output of one
element serves as input to another and so on, it is called sequential cohesion.

Functional cohesion - It is considered to be the highest degree of cohesion, and it is highly
expected. Elements of module in functional cohesion are grouped because they all
contribute to a single well-defined function. It can also be reused.

153

Coupling

Is a measure that defines the level of inter-dependability among modules of
a program. It tells at what level the modules interfere and interact with each
other. The lower the coupling, the better the program.

There are five levels of coupling, namely –

Content coupling - When a module can directly access or modify or refer to
the content of another module, it is called content level coupling.

Common coupling- When multiple modules have read and write access to
some global data, it is called common or global coupling.

Control coupling- Two modules are called control-coupled if one of them
decides the function of the other module or changes its flow of execution.

Stamp coupling- When multiple modules share common data structure and
work on different part of it, it is called stamp coupling.

Data coupling- Data coupling is when two modules interact with each other
by means of passing data (as parameter). If a module passes data structure
as parameter, then the receiving module should use all its components.

Cohesion - grouping of all functionally related elements.

Coupling - communication between different modules.

Ideally, no coupling is considered to be the best.

154

Object Oriented Design
Objects - All entities involved in the solution design are known as objects. For

example, person, banks, company and customers are treated as objects. Every entity
has some attributes associated to it and has some methods to perform on the
attributes.

Classes - A class is a generalized description of an object. An object is an instance of a
class. Class defines all the attributes, which an object can have and methods, which
defines the functionality of the object.

In the solution design, attributes are stored as variables and functionalities are defined
by means of methods or procedures.

Encapsulation - In OOD, the attributes (data variables) and methods (operation on the
data) are bundled together is called encapsulation. Encapsulation not only bundles
important information of an object together, but also restricts access of the data and
methods from the outside world. This is called information hiding.

Inheritance - OOD allows similar classes to stack up in hierarchical manner where the
lower or sub-classes can import, implement and re-use allowed variables and
methods from their immediate super classes. This property of OOD is known as
inheritance. This makes it easier to define specific class and to create generalized
classes from specific ones.

Polymorphism - OOD languages provide a mechanism where methods performing
similar tasks but vary in arguments, can be assigned same name. This is called
polymorphism, which allows a single interface performing tasks for different types.
Depending upon how the function is invoked, respective portion of the code gets
executed.

155

Software Design Approaches
1. Top Down Design

We know that a system is composed of more than one sub-systems and
it contains a number of components. Further, these sub-systems and
components may have their own set of sub-system and components
and creates hierarchical structure in the system.

Top-down design takes the whole software system as one entity and
then decomposes it to achieve more than one sub-system or
component based on some characteristics. Each sub-system or
component is then treated as a system and decomposed further. This
process keeps on running until the lowest level of system in the top-
down hierarchy is achieved.

Top-down design starts with a generalized model of system and keeps
on defining the more specific part of it. When all components are
composed the whole system comes into existence.

Top-down design is more suitable when the software solution needs to
be designed from scratch and specific details are unknown.

156

2. Bottom-up Design

The bottom up design model starts with most specific and
basic components. It proceeds with composing higher level
of components by using basic or lower level components. It
keeps creating higher level components until the desired
system is not evolved as one single component. With each
higher level, the amount of abstraction is increased.

Bottom-up strategy is more suitable when a system needs to
be created from some existing system, where the basic
primitives can be used in the newer system.

Both, top-down and bottom-up approaches are not practical
individually. Instead, a good combination of both is used.

Software Testing is evaluation of the software against
requirements gathered from users and system specifications.
Testing is conducted at the phase level in software
development life cycle or at module level in program code.
Software testing comprises of Validation and Verification.

157

Chapter Six: Software Validation and
Verification

Why Testing?

Two objectives – Verification and Validation (V&V):

To uncover errors (or bugs) in the software before delivery to the client.
This is called Verification -Verify that the program is working. “Are you
building the product right? Right?”

To ascertain that the software meet its requirement specification. This is
called Validation – Validate that the software meets its requirements. “Are
you building the right product? “

Software Validation

Validation is process of examining whether or not the software satisfies the
user requirements. It is carried out at the end of the SDLC. If the software
matches requirements for which it was made, it is validated.

 Validation ensures the product under development is as per the user
requirements.

 Validation answers the question – "Are we developing the product which
attempts all that user needs from this software?"

 Validation emphasizes on user requirements.

158

Software Verification

Verification is the process of confirming if the software is meeting the
business requirements, and is developed adhering to the proper
specifications and methodologies.

 Verification ensures the product being developed is according to
design specifications.

 Verification answers the question– "Are we developing this product
by firmly following all design specifications?"

 Verifications concentrate on the design and system specifications.

Target of the test are –

 Errors - These are actual coding mistakes made by developers. In
addition, there is a difference in output of software and desired
output, is considered as an error.

 Fault - When error exists fault occurs. A fault, also known as a bug,
is a result of an error which can cause system to fail.

 Failure - failure is said to be the inability of the system to perform
the desired task. Failure occurs when fault exists in the system.

159

What is Testing?

At a lower level, testing involves designing a

series of “TEST CASES” (or “TEST SUITE”)

to uncover errors and validate conformance to

requirements.

At a higher level, testing involves formulating

a test plan and test strategy for the execution of

the testing process.

160

Example on Testing

Requirement:

Write a program to assign an alphabetic grade to

raw marks as follows:

161

Program without Testing

This code can compile and run! (Compiler only catches syntax
errors, NOT semantics errors or logical errors.)

 Is the program working? (May be!) (Verification)

 Is the program correct? Does the program meet its
specification? (NO!) (Validation)

 Is the program efficient? (This is an issue on Software
Quality Assurance (SQA), not testing–There are 10
comparisons in the code, many of them are redundant!)

162

Test Cases
 To verify and validate the program, we design “a series

of test cases”. Each test case contains a specific input
and the expected output. For examples,

How many test cases is “necessary and sufficient”? (101?
How about numbers like 200, or–155? Countable
Infinity!)

 This series of lectures on “testing techniques” teaches
you how to design good test cases “applying sound
engineering principles”.

163

What Testing Shows?

164

Testing Stage of the Software Process

 The goal of testing is to “design a series of test cases”

that has “a high likelihood of finding errors”.

 How? Design test cases systematically by “applying

sound engineering principles and methods”.

 The work product of the testing stage is a “test

report” that documents all the test cases run, i.e., the

test input, the expected output, the actual output, the

purpose of the test and etc.

165

Testing Stage Details

166

Who tests the system?

 During the early stages of testing, the

developer performs the tests. As the testing

progresses, independent test specialist may

involved.

 “Open–source” software like Linux, Java,

Apache are known to be more secure and less

buggy because many independent parties have

“tested” the source code.

167

Chapter Seven: Software Testing

Testing Approaches

Tests can be conducted based on two approaches: –

- Functionality testing

- Implementation testing

When functionality is being tested without taking the
actual implementation in concern it is known as black-
box testing. The other side is known as white-box
testing where not only functionality is tested but the
way it is implemented is also analyzed.

Exhaustive tests are the best-desired method for a
perfect testing. Every single possible value in the range
of the input and output values is tested.

168

Black-box testing
It is carried out to test functionality of the

program. It is also called ‘Behavioral’ testing.

The tester in this case, has a set of input values

and respective desired results. On providing

input, if the output matches with the desired

results, the program is tested ‘ok’ and

problematic otherwise.

169

In this testing method, the design and structure of
the code are not known to the tester, and testing
engineers and end users conduct this test on the
software.

Black-box testing techniques:

Equivalence class - The input is divided into
similar classes. If one element of a class passes
the test, it is assumed that all the class is passed.

Boundary values - The input is divided into
higher and lower end values. If these values pass
the test, it is assumed that all values in between
may pass too.

170

Cause-effect graphing - In both previous methods,
only one input value at a time is tested. Cause
(input) – Effect (output) is a testing technique
where combinations of input values are tested in a
systematic way.

Pair-wise Testing - The behavior of software
depends on multiple parameters. In pairwise
testing, the multiple parameters are tested pair-
wise for their different values.

State-based testing - The system changes state on
provision of input. These systems are tested based
on their states and input.

171

White-box testing
It is conducted to test program and its implementation, in order to

improve code efficiency or structure. It is also known as ‘Structural’

testing. The design and structure of the code are known to the tester.

Programmers conduct this test on the code.

The below are some White-box testing techniques:

Control-flow testing - The purpose of it is to set up test cases which

cover all statements and branch conditions. The branch conditions

are tested for both being true and false, so that all statements can be

covered.

Data-flow testing - Emphasis to cover all the data variables included

in the program. It tests where the variables were declared and

defined and where they were used or changed.

172

Testing Levels
Unit Testing

The programmer performs some tests on unit of program to know if it is
error free. Testing is performed under white-box testing approach. Unit
testing helps developers decide that individual units of the program are
working as per requirement and are error free.

Integration Testing

There is a need to find out if the units if integrated together would also
work without errors. For example, argument passes and data updating etc.

System Testing

The software is compiled as product and then it is tested as a whole. This
can be accomplished using one or more of the following tests:

Functionality testing - Tests all functionalities of the software against the
requirement.

Performance testing - This test proves how efficient the software is. It
tests the effectiveness and average time taken by the software to do desired
task.

Security & Portability - These tests are done when the software is meant
to work on various platforms and accessed by number of persons.

173

Acceptance Testing

Alpha testing - The team of developer themselves
perform alpha testing by using the system as if it
is being used in work environment. They try to
find out how user would react to some action in
software and how the system should respond to
inputs.

Beta testing - After the software is tested internally,
it is handed over to the users to use it under their
production environment only for testing purpose.
This is not as yet the delivered product.
Developers expect that users at this stage will
bring minute problems, which were skipped to
attend.

174

